Regression of functional brain networks in early Alzheimer’s disease

Valentin Riedl1,3,4, Christian Sorg2, Afra Wohlschläger3
1Dept. of Neurology, 2Dept. of Psychiatry, 3Dept. of Neuroradiology, Univ. Hospital Rechts der Isar, Technische Universität (TUM), Munich
4Graduate School of Systemic Neurosciences, Munich Center for Neurosciences, Ludwig-Maximilians-Universität (LMU), Munich

The maturing brain has recently been analyzed with resting-state functional connectivity MRI (rs-fcMRI). Spatial patterns of synchronous, intrinsic brain activity were found to be similar to resting-state networks (RSNs) previously described in adults. However, distant regions of the default network have only been sparsely connected. The brain functional connectivity (FC) has also been analyzed in subjects at a later stage of life span. Here a disruption of long-range connections was reported that split the default network in an anterior and posterior part.

Recently we described selectively disturbed default and executive attention networks among several RSNs in patients with mild cognitive impairment (MCI) at high risk for Alzheimer’s Disease (AD). Are long-range connections in age-associated disorders like AD affected by pathological changes prior to short-range connections?

We analyzed RSNs of healthy subjects and patients with MCI at high risk for AD for the influence of regional proximity on FC.

Methods

Functional Connectivity

We constructed spherical ROIs (r=6mm) around previously described peak voxel of 4 RSNs and extracted the voxel-wise BOLD timecourse (tc). For each ROI the first eigenvector was derived with singular value decomposition yielding the most prominent proportion in the BOLD signal. The tc was bandpass-filtered (0.009<fc<0.079Hz) and the signal from global gray matter, CSF and deep white matter was removed from the data through linear regression. A Fisher’s Z-transformation was applied to yield normal distribution. We then calculated the pairwise Pearson’s correlation coefficients (r) for the 31 RSNs in both groups. Between-Group effects were calculated using two-sample t-tests and a correction for multiple comparisons was applied.

Transformation in a Functional Distance Space

The cross-correlation matrices of both groups were transformed in a twodimensional functional space using multi-dimensional scaling (MDS). The purpose of MDS is to provide a visual representation of the pattern of proximities (i.e., similarities or distances) among a set of objects (e.g., distances of several cities are projected on a map). To best conform the maps of all subjects a final procrustes analysis was applied. Procrustes method is used to align several shapes by rotating, shifting and stretching similar to warping images in the SPM normalization step.

Results

MCI compared to Healthy Controls

- no correlation in 4 right hemispheric pairs and left pCC/HC (red circles)
- increased correlation in right dIPFC/iTG and right mFGpost/HC left (green circles)

* = p < 0.05 (FDR corrected)

2-D functional distance space

The cross-correlation matrices of Healthy Controls (left) and MCI (right) transformed in a 2-D functional distance space.

Regions with strong positive correlation are plotted close to each other while anti-correlated regions are far apart.

For visualization purposes clusters have been identified with contour plots based on a Gaussian Mixture distribution.

We provide evidence for a disruption of interlobar long-range connections in early stages of AD. The transformation of the correlation matrix in a functional distance space further suggests an arrangement of the brain space along two axes: a structural (anterior-posterior) and a functional (intrinsic-extrinsic) axis. In the light of findings in developmental rs-fcMRI we interpret these results as a regression of functional brain networks in early AD that have been developed during lifetime while short-range connections are highly preserved.