Correlation-based temporal similarity mapping of DSC-MRI data in patients with asymptomatic unilateral high-grade carotid stenosis

Mirja Wolf1, Stephan Kaczmarz2,3, Jens Göttler2,3, Claus Zimmer3, Christian Schwarzbauer1, Christine Preibisch3,4
1University of Applied Sciences Munich, Munich, Germany, 2Yale University, New Haven, CT, USA, 3Department of Neuroradiology, Technical University of Munich, Munich, Germany, 4Clinic for Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany

Purpose
- high-grade internal carotid artery stenosis (ICAS) is a common cause of ischemic stroke
- good results in detecting vascular disease using dynamic susceptibility contrast (DSC) MRI
- major research objective: development of quick and easy methods for the analysis of DSC-MRI data
- recent suggestion: iterative correlation-based analysis methods for MRI data of stroke patients introduced by Song et al.2

Patients
- 20 patients (71.2±6.4y, 15 male)
 - high-grade unilateral ICAS (>70% according to NASCET criteria)
 - or occlusion

DSC-MRI @ 3T
- single-shot GE EPI,
 - TE/TR/a = 30 ms/1516 ms/60°
 - voxel size 2x2x3.5mm³
 - 26 slices
 - 80 repetitions
 - bolus of 15-20ml Gd-DOTA (after a pre-bolus)

Methods: Correlation analyses
- Data analysis used SPM126 and custom MATLAB programs6,6
- After preprocessing, Pearson correlation was performed using an iterative approach similar to Song et al6 (method M1)
 - initialization with mean brain time course (TC)
 - six iterations with supra-threshold brain voxels (r > 0.6)
- different reference TCs with short time to peak (TTP) (methods M2 – M5; see Fig. 1)
 - Subtraction method (M5) calculated each voxel’s TTP difference to the minimum TTP in GM (as obtained from the M2 reference TC)
 - Comparison of regions with prolonged TTP to volumes with reduced CCs for methods M1-M4 and TTP subtraction maps (M5)
 - Quantification of detected volumes by applying appropriate thresholds to the TTP, CC and subtraction maps (see Fig. 2)

Results
- Figure 3 shows examples of two patients (A, B) where correlation and subtraction analysis revealed areas with low CCs corresponding reasonably well to areas with prolonged TTP.
- M1 and M3 showed good or acceptable results in all patients, M2 in 75%, M4 in 95%, and M5 in 90% of all patients (visual rating with regard to spatial congruency; rater MW).
- M4 identified the largest lesion regions (+7.5%), M5 the smallest (-5.1%) (Table 1).
- Challenges:
 - low CC values of M1 also detected regions with short TTPs in addition to prolonged TTPs,
 - M2 completely failed or yielded poor CC-maps in one or four patients, respectively.
 - AIF-detection employed for M4 reliably found good quality TCs with shortest TTP in all patients, low-CC volumes tended to be larger than the reference region (Table 1).
 - thresholding CC-maps for performance analyses was difficult in some patients due to poor image quality or nearly uniform CC-values (=1.0, i.e. homogenous TTP)

Discussion & Conclusion
- All methods (except M2) successfully identified ≥ 90% of regions with prolonged TTP
- Overall, the results were promising but several issues remain:
 - the iterative method (M1) shows precision deficits since low CCs could also mean short TTPs
 - M2 is highly sensitivity to noise, producing poor results in 25% of all patients and thus, appears not suitable for broader use
 - correlation with the AIF (M4) tended to identify larger regions than the TTP-based reference
 - the subtraction method (M5) failed in two patients with only slightly prolonged TTPs, but revealed excellent congruence with the visually identified TTP regions in 18 patients.
 - M5 is by far the fastest method with a processing time of 18±5 sec compared to 686±12sec (M1), 235±13sec (M2), 130±11sec (M3), 119±4sec (M4) [Lenovo ThinkPad X201 with Intel® Core™ i5 CPU, 8GB RAM, 64 bit Windows 10].
 - with further methodological improvements, these techniques may provide a quick clinical assessment of perfusion status in the future.

Table 1: Patient averages (mean ± standard deviation (SD)) of region volumes with prolonged TTP and reduced correlation coefficients (CCs) as identified by methods M1 – M5

<table>
<thead>
<tr>
<th>Method</th>
<th>CCs</th>
<th>TTP Region with Prolonged TTP</th>
<th>M1 (Pearson auto.)</th>
<th>M2 (min. TTP GM)</th>
<th>M3 (< 0.5% in max. TTP in GM)</th>
<th>M4 (AIF)</th>
<th>M5 (subtraction method)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>36.8 ± 11.0%</td>
<td>34.3 ± 7.7%</td>
<td>39.1 ± 11.9%</td>
<td>33.5 ± 7.5%</td>
<td>28.9 ± 12.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>36.8 ± 8.4%</td>
<td>34.3 ± 7.7%</td>
<td>39.1 ± 11.9%</td>
<td>33.5 ± 7.5%</td>
<td>28.9 ± 12.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>36.8 ± 11.0%</td>
<td>34.3 ± 7.7%</td>
<td>39.1 ± 11.9%</td>
<td>33.5 ± 7.5%</td>
<td>28.9 ± 12.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>36.8 ± 11.0%</td>
<td>34.3 ± 7.7%</td>
<td>39.1 ± 11.9%</td>
<td>33.5 ± 7.5%</td>
<td>28.9 ± 12.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td>36.8 ± 11.0%</td>
<td>34.3 ± 7.7%</td>
<td>39.1 ± 11.9%</td>
<td>33.5 ± 7.5%</td>
<td>28.9 ± 12.3%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>