

Reducing T2-related bias in mq-BOLD derived maps of **Oxygen Extraction Fraction by 3D acquisition**

Stephan Kaczmarz^{1,2,3*}, Jens Göttler^{1,2,3,4}, Andreas Hock⁵, Dimitrios Karampinos⁴, Claus Zimmer¹, Fahmeed Hyder³, Christine Preibisch^{1,2,6}

Session: Physiological Techniques Room: Exhibition Hall Time: 4:15pm – 5:15 pm Wednesday, June 20, 2018 Date:

¹Department of Neuroradiology, Technical University of Munich, Munich, Germany²TUM Neuroimaging Center, Technical University of Munich, Munich, Germany ³Departments of Radiology & Biomedical Imaging and of Biomedical Engineering, MRRC, Yale University, New Haven, CT, USA ⁴Institute of Radiology, Technical University of Munich, Munich, Germany ⁵Philips Healthcare, Hamburg, Germany ⁶Clinic for Neurology, Technical University of Munich, Munich, Germany

> *<u>Contact</u>: <u>stephan.kaczmarz@tum.de</u> @skaczmarz

Declaration of Financial Interests or Relationships

Speaker Name: Stephan Kaczmarz

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Motivation

rOEF in ICAS

Yale

lssue

Hypothesis

However, rOEF values systematically elevated

rOEF elevations caused by T₂ elevations

rOEF elevations can be reduced by 3D GraSE T₂ acquisition

rOEF in Glioma

Material & Methods

Multi-parametric quantitative BOLD (mq-BOLD)

4

Yale

Material & Methods

MR Sequences

Subjects			T ₂ mapping				T ₂ *	DSC	<u>Main</u>	
			Single-SE	2D-GraSE	3D-GraSE I	3D GraSE II	multi GRE	GE-EPI	paramete	<u>:r</u>
Stage 1	Phantom	6 different VOI's							\Box T_2	
Stage 2	10 YHC	age: 28.4 ± 4.1 y	(Literature)				V		□ R ₂ '	
Stage 3	8 EHC	age: 69.5 ± 4.8 y						$\overline{\checkmark}$	rOEF	
Stage 4	3 ICAS	age: 63.0 ± 9.6 y						<	rOEF	
			TE = 60, 70, 80, 100, 120, 140, 160 ms	TE₁ = ΔTE = 16 ms	TE1 = ΔTE = 16 ms	TE1 = ΔTE = 10 ms	TE₁ = ΔTE = 5 ms	TE = 30 ms		
			7 echoes	8/4 echoes	8 echoes	16 echoes	12 echoes	1 echo		
			TR=3000 ms	TR=8596 ms	TR=251 ms	TR=487 ms	TR=1950 ms	TR=1513 ms		
			3.5x4x4 mm ³	2x2x3 mm ³	2x2x3 mm³	2x2x3 mm ³	2x2x3 mm ³	2x2x3.5 mm ³		
			5 slices	30 slices	30 slices	30 slices	30 slices	26 slices		
			each 2:36 min	2:23 min	2:09 min	4:09 min	6:08 min	2:01 min		

Results

Stage 1: Phantom T₂

Sequence		T ₂ in phantom volumes of interest [ms]							
		1	2	3	4	5	6		
Single-SE		32,4 ± 1,7	48,6 ± 0,7	61,1 ± 0,9	62,6 ± 1,0	61,9 ± 0,9	105,1 ± 2,7		
2D-GraSE	all echoes	37,9 ± 1,2	52,5 ± 1,2	65,8 ± 1,8	$68,3 \pm 1,0$	$68,5 \pm 1,4$	$115,7 \pm 4,7$		
	even echoes	$36,7 \pm 0,9$	$50,9 \pm 1,0$	$62,8 \pm 1,0$	$64,7 \pm 0,8$	64,5 ± 1,0	$106,2 \pm 3,4$		
3D-GraSE I		33,1 ± 1,7	45,1 ± 1,5	$58,4 \pm 3,3$	61,6 ± 1,9	$62,0 \pm 2,6$	$101,6 \pm 4,3$		
3D-GraSE II		34,1 ± 1,6	47,1 ± 1,4	60,5 ± 2,7	63,1 ± 1,4	63,4 ± 2,1	$105,1 \pm 3,6$		

Yale

Results

Stage 2: YHC examplary data

Globally decreased T₂ & R₂' by 3D-GraSE II

30y, male

Results

GM & WM mean of all YHC

Yale

Stage 2: YHC R₂'

Artefact exclusion by R₂' and fit-errors

GM & WM mean of all EHC

Yale

Stage 3: EHC rOEF

3D-GraSE II with significant decrease of T_2 , R_2' & rOEF

<u>Results</u>

High-grade left sided unilateral ICAS 69y, female

Stage 4: ICAS examplary data

69y, female

High-grade left sided unilateral ICAS

<u>Results</u>

Stage 4: ICAS rOEF

Summary

Systematically elevated rOEF values biased by elevated T₂

3D-GraSE I significantly reduces T₂ and shortens scan time

3D-GraSE II with increased echo sampling (10ms) and prolonged echo train (160 ms) shows even better results

rOEF significantly decreased (to 0.81 in WM & 0.54 in GM) & focal hyperintensities become visible

> Remaining bias requires further analysis, e.g. by CSF induced partial volume effects

3D-GraSE T₂-mapping further improves mq-BOLD by lowering rOEF-values closer to physiological values

TIM 5023 Reducing T_2 -bias in mq-BOLD imaging

Yale

Thank you very much for your attention!