

Assessment of white matter anisotropy effects in mq-BOLD based mapping of relative Oxygen Extraction Fraction

Stephan Kaczmarz^{1,2,3*}, Jens Göttler^{1,2,3,4}, Andreas Hock⁵, Dimitrios Karampinos⁴, Claus Zimmer¹, Fahmeed Hyder³, Christine Preibisch^{1,2,6}

Session: Perfusion & Permeability Room: **S04** Time: 1:45 pm – 3:45 pm Date: Tuesday, June 19, 2018

¹Department of Neuroradiology, Technical University of Munich, Munich, Germany²TUM Neuroimaging Center, Technical University of Munich, Munich, Germany ³Departments of Radiology & Biomedical Imaging and of Biomedical Engineering, MRRC, Yale University, New Haven, CT, USA ⁴Institute of Radiology, Technical University of Munich, Munich, Germany ⁵Philips Healthcare, Hamburg, Germany ⁶Clinic for Neurology, Technical University of Munich, Munich, Germany

> *Contact: stephan.kaczmarz@tum.de @skaczmarz

Declaration of Financial Interests or Relationships

Speaker Name: Stephan Kaczmarz

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Background

Oxygen **E**xtraction **F**raction (OEF): Fundamental marker of cerebral metabolic function

- Measurement by multi-parametric quantitative BOLD (mq-BOLD)
- Model vasculature by randomly oriented cylinders with infinite length
- Three separate measurements of T_2^* , T_2 and rCBV by DSC

Right sided ICAS

Motivation

Highly ordered WM

mq-BOLD model

mq-BOLD derived map

Highly ordered WM fiber structure

Preferential blood vessel alignment

Orientation effects in GRE & DSC

rOEF anisotropy effects?

Analyze validity of mq-BOLD derived rOEF with respect to orientation effects

Material & Methods

DTI fiber orientation information

Material & Methods

MR imaging protocol

Material & Methods

Scanner & Participants

- 3T Philips Ingenia
- Software release 5.1.8
- 16 channel head-neck coil
- Custom patches

- No previous strokes or lesions
- No MR contraindications
- No kidney disease

70.3 ± 4.8 y

Results

 T_2^* & T_2 orientation effects

•
$$\Delta T_2^*(\theta) = 6.5 \text{ ms} = 13.5 \%$$

• $\Delta R_2^*(\theta) = 2.5 \text{ Hz}$
• $\Delta T_2(\theta) = 5.9 \text{ ms} = 7.5 \%$
• $\Delta R_2(\theta) = 0.9 \text{ Hz}$

Results

R₂' & rCBV orientation effects

Very strong R₂' and rCBV orientation effects relative to B₀

Results

rOEF orientation artefacts

Discussion

Fits & orientation effect origins

T₂* & rCBV orientation effects:

Highly ordered myelin-fiber structures

Preferentially oriented vasculature

T₂ orientation effects:

Diffusion preferred along myelin sheaths

Summary

Successful quantitative analysis of mq-BOLD orientation effects

Confirmed strong orientation effects of T₂*, T₂ and rCBV

rOEF with average orientation effect error of 3.8 %

Reliable rOEF mapping by mq-BOLD in WM with respect to anisotropy effects

Yale

Thank you very much for your attention!