OHBM 2012 Trainee Abstract Travel Award Certificate

18th Annual Meeting of the Organization for Human Brain Mapping
China National Convention Center (CNCC)
Beijing, China
June 10-14, 2012

Andrei Manoliu, Department of Psychiatry and Neuroradiology, Technische Universität München, Munich, Germany

This certificate serves as verification that the above attendee received a Trainee Abstract Travel Award for the 2012 OHBM Annual Meeting in Beijing, China.

OHBM2012
Beijing, China

JoAnn Taie, OHBM Executive Director

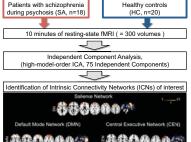
Aberrant insular regulation of brain network interactions in schizophrenia

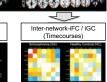
Andrei Manoliu^{1,2}, Valentin Riedl^{2,4}, Susanne Neufang², Andriy Zherdin², Nicholas Myers², Mark Mühlau⁴, Claus Zimmer², Hans Förstl¹, Josef Bäuml¹, Afra M. Wohlschläger^{2,4}, Christian Sorg^{1,2,3}

Department of ¹Psychiatry, ²Neuroradiology, ³Nuclear Medicine, ⁴Neurology of Klinikum rechts der Isar, Technische Universität München, Germany

1. INTRODUCTION

- Insula. In schizophrenia, consistent structural and functional changes have been demonstrated for the insular cortex including aberrant salience and prediction error coding, both representing critical elements of psychosis 1,2.
- DMN-CEN interactions. Interactions within and between the default-mode and centralexecutive network (DMN, CEN) are impaired in schizophrenia3.
- Salience Network. The insula is a critical component of the salience network (SN), an intrinsic connectivity network (ICN) comprising insula, the fronto-insular operculum and dorsal anterior cingulate cortex (dACC). The SN is affected by both impaired structural integrity and functional connectivity in schizophrenia^{4,5}.
- SN's regulatory function for DMN-CEN interactions. Critical regulatory impact of the SN on DMN-CEN interactions has been shown⁶. Recently, it has been proposed that the SN's key function is its regulatory role in switching between internally oriented selfrelated (DMN-based) and externally oriented goal-directed (CEN-based) processes7.


2. QUESTIONS


- ① Is the insular Salience Network's regulatory function for the DMN-CEN interactions disrupted in schizophrenia?
- 2 Are these alterations related to the degree of impaired DMN-CEN interactions and severity of psychosis?

3. METHODS

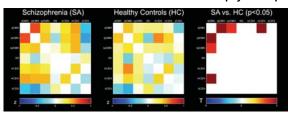
Schematic of the analysis pipeline

Intra-network-iFC

Participants' demographic and clinical characteristics

	SA (n=18)	HC (n=20)
Measure	Mean (SD)	Mean (SD)
Age	35,33 (12,49)	34,00 (13,35)
Sex (m/f)	9/9	9 / 11
PANSS		
Total	76,44 (18,45)	30,15 (0,67)
Positive	18,06 (5,74)	7,05 (0,22)
Negative	19,94 (8,11)	7,10 (0,45)
General	37,67 (9,93)	16,05 (0,23)
GAF	41,50 (11,55)	99,75 (1,12)
CPZ	466,72 (440,49)	

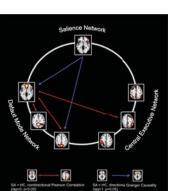
Data analysis


- Selection of networks of interest: multiple spatial regressions on 75 ICs 'SMs using T-maps of 28 ICns described by Allen et al.". Intra-network intrinsic functional connectivity (IFC): ovsel-wise tests on participants' SMs with age, sex and total gray matter (GM) volumes as covariate-of-no-interest (pc.015 FWE-corrected).
 - volumes as covariate-of-no-interest (p-0.0.0 F-WE-corrected). Inter-network intrinsic functional connectivity (RFC): ICN TCs were detrended, despiked, filtered using a fifth-order Butteworth low-pass filter with a high frequency cutoff of 0.15Hz, and painwise correlated by Pearson's correlation. Fisher-transformed correlation coefficients were entered into two-sample-1-tests. (p<0.05, corrected for multiple comparisons.)
- corrected for multiple comparisons) Inter-network-IGC (Granger Causality Analysis): Pairwise correlation was applied between SN's TC and all ICNs' TCs with lag = 1 (SN $_{80} \rightarrow$ ICN $_{91}$, for i=1 to n timepoints). Fisher-transformed correlation coefficients were entered into two-sample-t-tests.
- correlation coefficients were services.

 (Po-9.05).

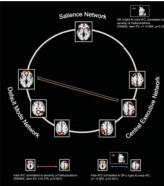
 Correlations: Partial correlations of SN's right and left Al group difference cluster eigenvariate and z-transformed correlation-coefficients of each pair of network TCs or PANSS scores for hallucination (P3) and delebions (P1), respectively, including age, sex, total GM and CPZ as covariates of no interest.

4. RESULTS (CONTINUED)


2. Inter-iFC between DMN and CEN was increased in psychotic patients

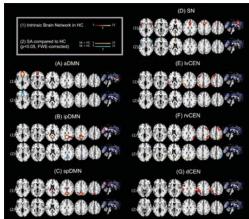
Inter-network intrinsic functional connectivity (inter-iFC) matrix for SA and HC.

- Inter-iFC was increased within the DMN in psychotic patients: SA showed increased inter-iFC between the aDMN and ipDMN as well as between the aDMN and the spDMN.
- Inter-iFC was increased between DMN and CEN in psychotic patients: SA showed increased inter-iFC between the aDMN and the rvCEN and a trend to increased inter-iFC between the spDMN and the rvCEN.
- SA did not show altered inter-iFC between the SN and any other ICN.


3. SN's regulatory function for **DMN-CEN** interactions is altered in psychosis

Between-group differences of both internetwork intrinsic functional connectivity and Granger causality in SA and HC

- SA showed reduced inter-iGC of the SN on both aDMN and spDMN.
- SA showed a trend to reduced internetwork iGC of the SN on the dCEN (p=0.053)


4. Right anterior insular SN connectivity predicted both DMN-CEN interaction changes and psychosis severity in patients

- SN's right AI's intra-iFC correlated negatively with the inter-iFC between aDMN and rvCEN
- SN's right Al's intra-iFC correlated negatively with the severity of hallucinations (P3).
- Inter-iFC between aDMN and rvCEN correlated positively with the severity of hallucinations (P3).

4. RESULTS

1. Intra-iFC of the SN is disrupted in bilateral anterior insula in psychotic

DMN, SN and CEN for HC and corresponding group differences for SA

- SN: SA showed both decreased intra-iFC in bilateral Al and increased iFC in bilateral ACC compared to HC.
- 3 ICNs representing the **DMN**: SA showed decreased intra-iFC in bilateral ACC and bilateral precuneus
- 3 ICNs representing the CEN: SA showed decreased intra-iFC in bilateral inferior parietal lobule and bilateral frontal gyrus and increased intra-iFC in the right angular gyrus and left inferior temporal gyrus.

5. CONCLUSION

- ① Impaired anterior insular SN activity is associated with an aberrant regulatory impact on DMN-CEN interactions in patients with schizophrenia
- 2 The degree of these alterations is related to the severity of psychosis.

These findings link changes of insular Salience Network connectivity and both DMN/CEN activity and severity of symptoms via reduced insula network regulation in schizophrenia .

6. REFERENCES

- alaniyappan L. (2012), 'Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction', Journal of psychiatry neuroscience, vol. 37, no. 1, pp. 17-27. raig A.D. (2009), How do you feel now? The anterior insula and human awareness'. Nature Reviews Neuroscience, vol. 10, no. 1, pp. 59-70. seasonkamp W. (2011), Altered engagement of attention and default networks during target detection in schizophrenia", Schizophrenia Research, vol. 125, isson-Winhir! (2009).

- Allen E.A. (2011), "A baseline for the multivariate comparison of resting-state networks", Frontiers in systems neuroscience, vol. 5.

7. ACKNOWLEDGEMENTS

We are grateful to the participants and to the staff of the Department of Psychiatry and Neuroradiology of Klinikum rechts der Isar, Technische Universität München.

8. CONTACT INFORMATION

Andrei Manoliu, M.D.

Ph.D. student, Department of Psychiatry and Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 Munich, Germany
Email: a.manoliu@googlemail.com, Phone: +49-89-4140-7666

