

Klinikum rechts der Isar Technische Universität München

The Bavarian Longitudinal Study: Altered cortical macround microstructure in very preterm born adults

Benita Schmitz-Koep^{1,2}; Aurore Menegaux^{1,2}; Dieter Wolke^{3,4}; Peter Bartmann⁵; Christian Sorg^{1,2,6}; Dennis M. Hedderich^{1,2}.

¹ Technical University of Munich; School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Ismaninger Str. 22, 81675 Munich, Germany; ² Technical University of Munich; School of Medicine and Health, TUM-NIC Neuroimaging Center, Ismaninger Str. 22, 81675 Munich, Germany; ³ University of Warwick; Department of Psychology, University Road, Coventry, CV4 7AL, United Kingdom; ⁴ University Road, Coventry, CV4 7AL, United Kingdom; ⁵ University Hospital Bonn; Department of Neonatology and Pediatric Intensive Care, Venusberg-Campus 1, 53127 Bonn, Germany; ⁶ Technical University of Munich; School of Medicine and Health, Department of Psychiatry, Ismaninger Str. 22, 81675 Munich, Germany

Background

- Very preterm birth is associated with altered brain development and an increased risk for cognitive deficits (Wolke, Johnson, and Mendonça 2019)
- Individuals born very preterm show structural brain alterations that remain detectable into adulthood (Meng et al. 2016)
- This work combines insights from two studies to shed light on the long-term consequences of very preterm birth on macro- and microstructural properties of the cortex

Methods

- ≈100 very preterm-born (<32 weeks of gestation and/or birth weight <1500g, VP/VLBW) adults and ≈100 full-term (FT) controls</p>
- 26 years of age
- Structural MRI (T1w, 3T), full-scale intelligence quotient (IQ) using the Wechsler Adult Intelligence Scale
- Cortical macrostructure -> Cortical thickness (CTh; see Figure 1)
- Cortical microstructure -> Percent contrast of

gray-to-white matter signal intensities (GWPC; Figure 1; Andrews et al. 2017): Grey matter intensities (GMI) sampled at different percentile fractions of the distance from the white matter surface to the pial surface (0%, 10%, 20%, 30%, 40%, 50%, and 60%), white matter intensity (WMI) sampled at 1 mm into the white matter ROI-based (Desikan-Killiany atlas)

Group comparison: General linear models with sex and scanner as factors of no interest, false discovery rate (FDR) corrected

Percentile fractions across the cortex: Pial surface White matter surface CTh GMI 60% GMI 50% GMI 40% GMI – Gray matter intensity GMI 30% GMI 20% WMI – White matter intensity GMI 10% GMI 0% 100x(WMI - GMI)1mm GWPC =

WM

Figure 1: CTh and calculation of GWPC across the cortex.

0.5x(WMI + GMI)

Relationship with IQ: Two-tailed partial correlation analyses; mediation analysis

Results							
	VP/VLBW (n=101)			FT (n=111)			
	Mean/n	SD	Range	Mean/n	SD	Range	p-value
Sex (male/female)	58/43			66/45			0.765
Age (vears)	26.7	+06	25 7 - 28 3	26.8	+ 0 7	<u> 25 5 - 28 0</u>	0 182

	J4.1	<u> </u>	04 - 131	102.3	± ±1.3	// = 130	\U.UUI
Full-scale IO (a.u.)	<u>9/</u> 1	+ 12 7	64 – 131	102 5	+ 11 9	77 – 130	<0 001
BW (g)	1325	± 313	630 – 2070	3398	± 444	2120 – 4670	<0.001
GA (weeks)	30.5	± 2.1	25 – 36	39.7	± 1.1	37 – 42	<0.001
Age (years)	26.7	± 0.6	25.7 – 28.3	26.8	± 0.7	25.5 – 28.9	0.182

- CTh was lower in very preterm-born adults compared to controls in frontal, parietal, and temporal associative cortices, predominantly in the left hemisphere (Figure 2)
- CTh was positively correlated with GA and BW, particularly in the left hemisphere, and negatively correlated with intensity of neonatal treatment within limited regions bilaterally
 - CTh in the left hemisphere was positively correlated with IQ, and mediated the relationship between preterm birth and IQ
 - GWPC was lower in frontal, parietal, and temporal associative cortices after very preterm birth, predominantly in the right hemisphere, differences were pronounced in middle cortical layers (20%-40%)
 - GWPC was higher in right paracentral lobule in VP/VLBW adults GWPC in frontal and temporal cortices was positively correlated with BWC and possitively with duration of ventilation (p<0.05)

with BW, and negatively with duration of ventilation (p<0.05) GWPC in right paracentral lobule was negatively correlated with IQ (p<0.05)

Figure 2: Group comparisons of CTh and GWPC between preterm-born adults and controls. P-values are color-coded. Statistical significance was defined as p < 0.05, FDR-corrected.

Conclusion

1) Very preterm birth is associated with long-term alterations in cortical structure, affecting both macro- and microstructure.

2) Prematurity has differential effects on associative and primary cortices.

3) Altered cortical macro- and microstructure contribute to cognitive deficits that persist into adulthood following preterm birth.

References:

- Andrews, Derek Sayre, Thomas A. Avino, Maria Gudbrandsen, Eileen Daly, Andre Marquand, Clodagh M. Murphy, Meng-Chuan Lai, et al. 2017. "In Vivo Evidence of Reduced Integrity of the Gray–White Matter Boundary in Autism Spectrum Disorder." Cerebral Cortex 27 (2): 877–87. https://doi.org/10.1093/cercor/bhw404.

- Desikan, Rahul S, Florent Ségonne, Bruce Fischl, Brian T Quinn, Bradford C Dickerson, Deborah Blacker, Randy L Buckner, et al. 2006. "An Automated Labeling System for Subdividing the Human Cerebral Cortex on MRI Scans into Gyral Based Regions of Interest." NeuroImage 31 (3): 968–80. https://doi.org/10.1016/j.neuroimage.2006.01.021.

- Meng, C., Bäuml, J. G., Daamen, M., Jaekel, J., Neitzel, J., Scheef, L., Busch, B., Baumann, N., Boecker, H., Zimmer, C., Bartmann, P., Wolke, D., Wohlschläger, A. M., & Sorg, C. (2016). Extensive and interrelated subcortical white and gray matter alterations in preterm-born adults. Brain Structure and Function, 221(4), 2109–2121. https://doi.org/10.1007/s00429-015-1032-9.

- Wolke, Dieter, Samantha Johnson, and Marina Mendonça. 2019. "The Life Course Consequences of Very Preterm Birth." Annual Review of Developmental Psychology 1 (1): 69–92. https://doi.org/10.1146/annurev-devpsych-121318-084804.

For more information, please read our publications!

Contact: benita.schmitz-koep@tum.de