

2D-GRE (2x2x3 mm³) no acceleration 03:39 min 3D-GRE (1x1x2 mm³) no acceleration 11:15 min 3D-GRE (1x1x2 mm³) CSAI *R* = 6 **02:07 min**

Accelerated High-Resolution 3D Gradient Echo with DL-Based Reconstruction Improves T2* Mapping for Oxygenation-Sensitive MRI

<u>Elisa Saks</u>^{1,2}, Gabriel Hoffmann^{1,2}, Hannah Eichhorn^{3,4}, Kilian Weiss⁵, Stephan Kaczmarz^{1,2,5}, Claus Zimmer¹, Christine Preibisch^{1,2,6}

*elisa.saks@tum.de

1 Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Germany. 2 TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany. 3 Institute of Machine Learning in Biomedical Imaging, Helmholtz Munich, Munich, Germany. 4 School of Computation, Information and Technology, Technical University of Munich, Munich, Germany. 5 Philips GmbH Market DACH, Hamburg, Germany. 6 Clinic for Neurology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Munich, Germany.

Background

multi-parametric quantitative BOLD (mqBOLD):

Motivation and Goal

2D multi-slice multi-echo GRE sequence

- voxel size: 2x2x3 mm³
- acq. time: 3:39 min
- affected by magnetic background field gradients (mBFG) \rightarrow correction algorithm in post-processing^{5,6}

Motivation and Goal

gradient echo T₂*

Goal: Improved T2* Mapping

- stable T2* values across mBFG strengths
- \rightarrow reduced voxel size⁷
- \rightarrow 3D acquisition⁸

Comparison #1

low-resolution 2D-GRE vs. high-resolution 3D-GRE

Motivation and Goal

Goal: Improved T2* Mapping

- high-resolution 3D-GRE = long scan time
- \rightarrow acceleration using a deep learning integrated compressed sensing approach⁹ (CSAI)

Comparison #2

fully-sampled vs. accelerated high-resolution 3D-GRE with different acceleration factors

Methods

visual inspection: T₂* parameter maps

visual inspection: R₂' parameter maps

T₂* VOI analysis in gray matter (GM)

T₂* VOI analysis in gray matter (GM)

VOI analysis in gray and white matter (GM/WM)

	VOI (tissue type)	T ₂ 3D-GRASE (2x2x3 mm ³)	2D-GRE T ₂ * (2x2x3 mm ³) uncorr.	3D-GRE T ₂ * (1x1x2 mm ³)				
				no acc.	<i>R</i> = 2	<i>R</i> = 4	<i>R</i> = 6	<i>R</i> = 8
T ₂ /T ₂ * [ms]	GM	80.3 ± 1.8	47.7 ± 1.2	53.1 ± 1.7 *	53.5 ± 1.7 *	54.0 ± 1.8 *	53.7 ± 1.8 *	53.3 ± 1.9 *
	WM	68.1 ± 1.2	47.8 ± 1.1	49.7 ± 0.9 *	49.8 ± 1.0 *	49.9 ± 1.2 *	49.6 ± 1.2 *	49.8 ± 1.1 *
R ₂ ' [Hz]	GM	-	$\textbf{7.7} \pm \textbf{0.6}$	7.9 ± 0.9	$\textbf{7.3}\pm\textbf{0.8}$	7.0 ± 0.7	7.2 ± 1.0	$\textbf{7.2}\pm\textbf{0.8}$
	WM	-	5.8 ± 0.5	6.0 ± 0.5	5.8 ± 0.5	5.7 ± 0.5	5.9 ± 0.7	5.7 ± 0.5

magnetic background field correction VOI analysis

magnetic background field correction VOI analysis

low-resolution 2D- vs. high-resolution 3D-GRE acquisition

magnetic background field correction VOI analysis

Conclusion and Outlook

$\textbf{2D-GRE} \rightarrow \textbf{high-resolution 3D-GRE with CSAI acceleration}$

- ✓ higher spatial resolution leading to improved T2* mapping
- ✓ reduced intrinsic susceptibility to magnetic background field gradients
- ✓ faster acquisition possible

in the future

- mBFG corretion algorithm for 3D-GRE
- correction for subject motion

Thank you for your attention!