

327 – Relaxometry & Optimization

Accelerated High-Resolution 3D Gradient Spin Echo Imaging Improves T₂ Quantification Accuracy

Elisa Saks^{1,2}, Gabriel Hoffmann^{1,2}, Hannah Eichhorn^{3,4}, Kilian Weiss⁵, Stephan Kaczmarz^{1,2,5}, Claus Zimmer¹, Christine Preibisch^{1,2,6} ¹ Institute of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Hospital, Technical University of Munich, Munich, Germany ² TUM-Neuroimaging Center, TUM Hospital, Technical University of Munich, Germany ³ Institute of Machine Learning in Biomedical Imaging, Helmholtz Munich, Munich, Germany ⁴ School of Computation, Information and Technology, Technical University of Munich, Munich, Germany ⁵ Philips GmbH Market DACH, Hamburg, Germany

⁶ Clinic for Neurology, School of Medicine and Health, TUM Hospital, Technical University of Munich, Munich, Germany

Background • multi-parametric quantitative blood oxygenation level dependent (mqBOLD) MRI allows to assess clinically relevant biomarkers like the oxygen extraction fraction (OEF)^{1,2} and the cerebral metabolic rate of oxygen (CMRO₂)^{3,4}

- mqBOLD requires accurate quantification of T_2 , T_2^* , cerebral blood flow and volume (CBF/CBV) \rightarrow acquisition time beyond clinical feasibility
- modern MRI reconstruction techniques allow for high acceleration factors R at preserved image quality^{5,6}

<u>Hypothesis</u> high-resolution 3D gradient spin echo (GRASE) imaging combined with an L1-regularized iterative reconstruction^{5,6} enables more accurate T_2 quantification in shorter acquisition time \rightarrow additional benefits from reconstruction based on adaptive intelligence⁷?

<u>Methods</u>

- 3T Philips Ingenia Elition X MRI scanner with a 32-channel head coil
- 10 healthy subjects aged 27.5 \pm 2.9 years
- multi-echo T2-weighted data:
 - low- (reference) vs. high-resolution (optimized) scans
 - L1-SENSE: sensitivity-encoding-based undersampling with L1-regularized iterative reconstruction
 - AI-SENSE: undersampling with an reconstruction algorithm enhanced by adaptive intelligence
 - exponentially fitted to obtain T_2 parameter maps

 0.973 ± 0.007 0.974 ± 0.007 29.67 ± 2.70 29.99 ± 3.22 0.961 ± 0.007 0.962 ± 0.007 30.86 ± 2.82 30.47 ± 2.54 0.956 ± 0.006 0.956 ± 0.007 29.09 ± 4.90 28.68 ± 4.91 0.953 ± 0.007 0.953 ± 0.007 28.40 ± 6.49 27.70 ± 6.06

VOI analysis (figure top right): lower median T_2 values for optimized sequences, stable in GM across *R* but slightly increasing in WM

elisa-saks

Discussion • optimized multi-echo 3D GRASE with voxel size 1x1x2 mm³ yielded high-resolution T₂ maps with lower median T₂ values in GM and WM (in

line with literature^{2,8}) across acceleration factors \rightarrow improved quantification accuracy due to reduced partial volume effects at tissue borders

denoising properties of AI-SENSE reduced g-factor noise⁹ introduced by SENSE-based acceleration (also reflected in higher median T₂ values in WM), but could not correct for aliasing¹⁰ at R = 2.83x2.83 ≈ 8

Conclusion • high-resolution 3D GRASE in combination with L1-SENSE acceleration up to $R = 2.45 \times 2.45 \approx 6$ enables faster and more accurate

 T_2 mapping compared to the low-resolution reference \rightarrow reduction of acquisition time for the mqBOLD method

• image quality (g-factor noise) can further be improved by applying a reconstruction with adaptive intelligence (AI-SENSE)

References

 $R = 2.00 \times 2.00$

 $R = 2.45 \times 2.45$

 $R = 2.83 \times 2.83$

Hirsch, *NMR Biomed*, 2014
 Kaczmarz, *NeuroImage*, 2020
 Göttler, *J Cereb Blood Flow Metab*, 2019
 Gersing, *Neuroradiology*, 2015
 Lustig, *Magn Reson Med*, 2007
 Kamal, *Magn Reson Imaging*, 2022

7 Pezzotti, *IEEE Access*, 2020
8 Christen, *Magn Reson Med*, 2012
9 Larkman, *Phys Med Biol*, 2007
10 Heiland, *Clin Neuroradiol*, 2008

data processing software: MATLAB R2021b, The MathWorks Inc., USA SPM12, Wellcome Centre for Human Neuroimaging

Contact Information

Elisa Saks Technical University of Munich (TUM) elisa.saks@tum.de

m

@NMRMgroup

Acknowledgements

We acknowledge support from the Deutsche Forschungsgemeinschaft (DFG), project number 395030489.