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Active Inference Results

Discussion & Conclusion
We found6 that, among patients with FEP, deficits in probabilistic decision-making in an orthogonalized Go/NoGo task were linked to increased forgetting, reduced prior precision
and less optimal general choice behaviour, with poorer punishment learning. Reduced prior precision in FEP may be linked to alterations in tonic striatal dopaminergic activity,
which is associated with D2/3 receptor availability7. Our results support findings of previous studies and provide further mechanistic insights about how altered cognitive
processes may lead to dysfunctional decision-making in psychosis. Furthermore, the combination of performance and active inference parameters revealed great potential for the
classification of patients with early psychosis, especially for the distinction of controls and ARMS individuals. This finding is highly relevant for future research on biomarkers for
early identification of psychosis, and should be validated in larger testing samples.
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Background

To interact successfully with their environment, humans need to build a model of the
world to make sense of noisy and ambiguous inputs1. Active inference emphasizes the
importance of action selection, as a key part of the inferential process2. An inaccurate
model, as suggested to be the case for people with psychosis, disturbs optimal action
selection3.
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Research Questions

1. Are active inference parameters altered in early psychosis?

2. Do active inference parameters derived from an orthogonalized Go/NoGo task 
differ between different early stages of disease?

3. Can active inference parameters be used for patient classification?
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Orthogonalized Go/NoGo Task

Variable Controls ARMS individuals Patients with FEP Group comparison
n Mean ± SD n Mean ± SD n Mean ± SD Statistic, p value

F/M 14/16 6/17 3/22
Age, yr 30 22.57 ± 3.68 23 21.22 ± 3.40 25 24.56 ± 4.67 F2,75 = 4.38*, 0.016
Antipsychotics (yes/no) 0/29 2/21 19/7 χ22 = 43.43, < 0.001

Clinical measures

WASI 27 30.52 ± 3.39 18 27.56 ± 4.71 21 28.48 ± 5.11 F2,63 = 2.77*, 0.070
CAARMS 26 5.46 ± 3.84 21 29.52 ± 6.71 24 33.67 ± 6.23 H2 = 51.28, < 0.001
SPQ 29 8.21 ± 6.34 21 35.43 ± 12.10 23 34.22 ± 19.60 H2 = 37.70, < 0.001
PANSS pos. 21 16.86 ± 2.78 22 21.27 ± 6.22 t29.36 = −3.03, 0.005
PANSS neg. 21 14.48 ± 5.95 22 14.82 ± 7.37 W = 239.5**, 0.845
CAPS 21 11.62 ± 7.26 22 11.45 ± 9.43 W = 235.5**, 0.922
PDI 21 7.76 (4.39) 22 9.14 (5.69) t39.31 = −0.89, 0.380
MFQ 21 29.67 (15.04) 24 31.00 (26.32) W = 269.5, 0.699 

Learning Rate and Performance Results
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Task specifics4: 144 trials, 36 trials per condi(on; 80:20 probabilis(c reward associa(on
Analysis: Ac(ve inference modelling using TAPAS toolbox in MATLAB5, robust ANOVAs 
for group differences, logis(c regression and receiver opera(ng characteris(c (ROC) 
analyses for classifica(on assessing the area under the curve (AUC)

FEP patients, but not ARMS individuals show increased forgetting, a trend
towards lower prior on policy precision, less Bayes optimal choice behaviour

FEP pa@ents, but not ARMS individuals show lower learning rates and lower
accuracy in trials with nega@ve valance (i.e. NoGo and Go to avoid losing)

Successful classification
of all three groups

when combining performance
measures and active inference
parameters
à Especially interesting for
differentiation of ARMS
individuals and controls
à Validation in larger testing
sample necessary
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