

ПЛ

Comparing non-invasive blood-brain barrier mapping with dynamic susceptibility contrast MRI in patients with high-grade glioma and metastasis

<u>Gabriel Hoffmann</u>^{1,2*}, Christine Preibisch¹⁻³, Matthias Günther⁴⁻⁶, Amnah Mahroo⁴, Matthias JP van Osch^{7,8}, Lena Václavů⁷, Marie-Christin Metz¹, Kirsten Jung¹, Claus Zimmer^{1,2}, Benedikt Wiestler¹ and Stephan Kaczmarz^{1,2,9}

Philips Combined Neuroscience and Spine User Meeting – Brain and Spinal Cord connectivity award Abstract #: 3834

*gabriel.hoffmann@tum.de

1 Technical University of Munich, School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany

2 Technical University of Munich, School of Medicine and Health, TUM-Neuroimaging Center, Munich, Germany 3 Technical University of Munich. School of Medicine and Health. Clinic of Neurology. Munich. Germany

4 MR Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany

5 MR-Imaging and Spectroscopy, University of Bremen, Bremen, Germany 6 mediri GmbH, Heidelberg, Germany 7 C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands 8 Leiden Institute of Brain and Cognition, Leiden University, Leiden, The Netherlands 9 Philips GmbH Market DACH, Hamburg, Germany

How can blood brain barrier (BBB) integrity be mapped?

- BBB disruptions in high-grade Tumors¹⁻³
- Background
- Qualitative imaging used clinically
- K₂ quantitative based on DSC

How can blood brain barrier (BBB) integrity be mapped?

Purpose• Evaluate sensitivity of non-invasive water
exchange time T_{ex} from multi-TE ASL1

Hypothesis

- T_{ex} and K₂ correlate in regions with impaired BBB integrity
- T_{ex} may yield superior sensitivity

How does ASL map BBB non-invasively?

1: Günther, Proc ISMRM, 2007 2:Mahroo, Front Neurosci., 2021 3: Gregori, JMRI, 2013 Image taken from Reference 2

How is K₂ calculated based on dynamic susceptibility contrast (DSC) MRI?

• Correct ΔR_2^* with reference (non-leaky tissue)¹

Method

$$\Delta \mathbf{R}_2^* = K_1 \ \overline{\Delta \mathbf{R}_2^*(\mathbf{t})} - K_2 \int_0^t \overline{\Delta \mathbf{R}_2^*(t')} \ dt'$$

- $K_2 > 0 \rightarrow T_1$ shortening
- $K_2 < 0 \rightarrow T_2^*$ effects

\rightarrow Increased $|K_2|$ in leaky areas

$\rightarrow T_{ex} \blacksquare = |K_2|$

1: Boxerman, AJNR, 2006 Image taken from Reference

Imaging protocol includes conventional MRI and ASL-BBB mapping

Study population contains patients and age-matched HCs

- 28 patients (64.5±12.3y)
- 12 female / 16 male
- High-grade (WHO 3&4) relapsed Glioma & Metastasis

- 17 age-matched HC (61.0±14.9y)
- 13 female / 4 male

ΠΠ T_{ex}↓ ≙ |K₂|↑

Exemplary data of glioma and metastasis patients

 \rightarrow Visible concordance of T_{ex} & K₂ maps

 $T_{ex} \blacksquare |K_2|$

Do K_2 and T_{ex} correlate?

→ Correlation in Contrast Enhancing Tissue (CET) → No correlation in Normal-Appearing Grey Matter (NAGM)

 $T_{ex} \blacksquare = |K_2|$

How do $T_{ex}\,$ and $K_2\,compare$ in CET?

→ CET: Reduced T_{ex} agrees with increased |K₂|

 \rightarrow Edema: Reduced T_{ex} vs reduced |K₂|

 $T_{ex} \blacksquare = |K_2|$

Does BBB leakage differ between patients and HCs?

 \rightarrow Patients' T_{ex} reduced in Normal-Appearing (NA) tissue; no effects for $|K_2|$

 $T_{ex} \blacksquare = |K_2|$

Is the T_{ex} a reliable proxy for BBB impairments?

	In CET correlation between T_{ex} and K_2
sion	Decreased T_{ex} in CET agrees with increased $ K_2 $ and literature ¹⁻⁴
oiscus	Reduced T_{ex} in edema \leftrightarrow high sensitivity to impaired BBB ⁵
	Reduced T _{ay} in NAWM & NAGM \rightarrow subtle impairments?

	ASL-based T _{ex} mapping sensitive for BBB impairments
nary	T_{ax} may have superior sensitivity compared to K_2
Sumn	Promising for detecting more subtle impairments (e.g., Alzheimer, small vessel
	disease) ^{6,7}

3: Kluge, MRI, 2016 4: Bonekamp, JMRI, 2015

7: Thrippleton, Alzheimers Dement., 2019

1: Heye, Neuroimage-clinical, 20142: Keyl, Clinical neurorad., 20215: Solar, Front Cell Neurosci 20226: Starr, Psychiatry Res., 2009

Digital Poster Session: Neuro-Oncology: Assessment of Date & Time: Wed, 2.30-3.30 pm Metastases, Lymphoma Abstract #: 3834

Thank you for your attention!

We want to highly appreciate the support by:

German Research Foundation (DFG) Ev. Studienwerk Villigst

