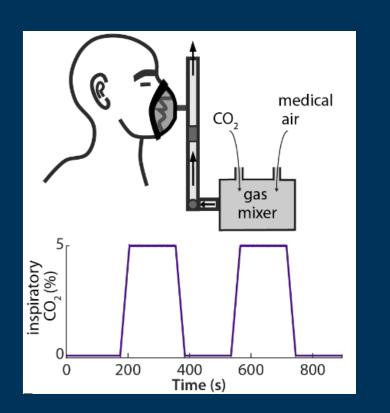
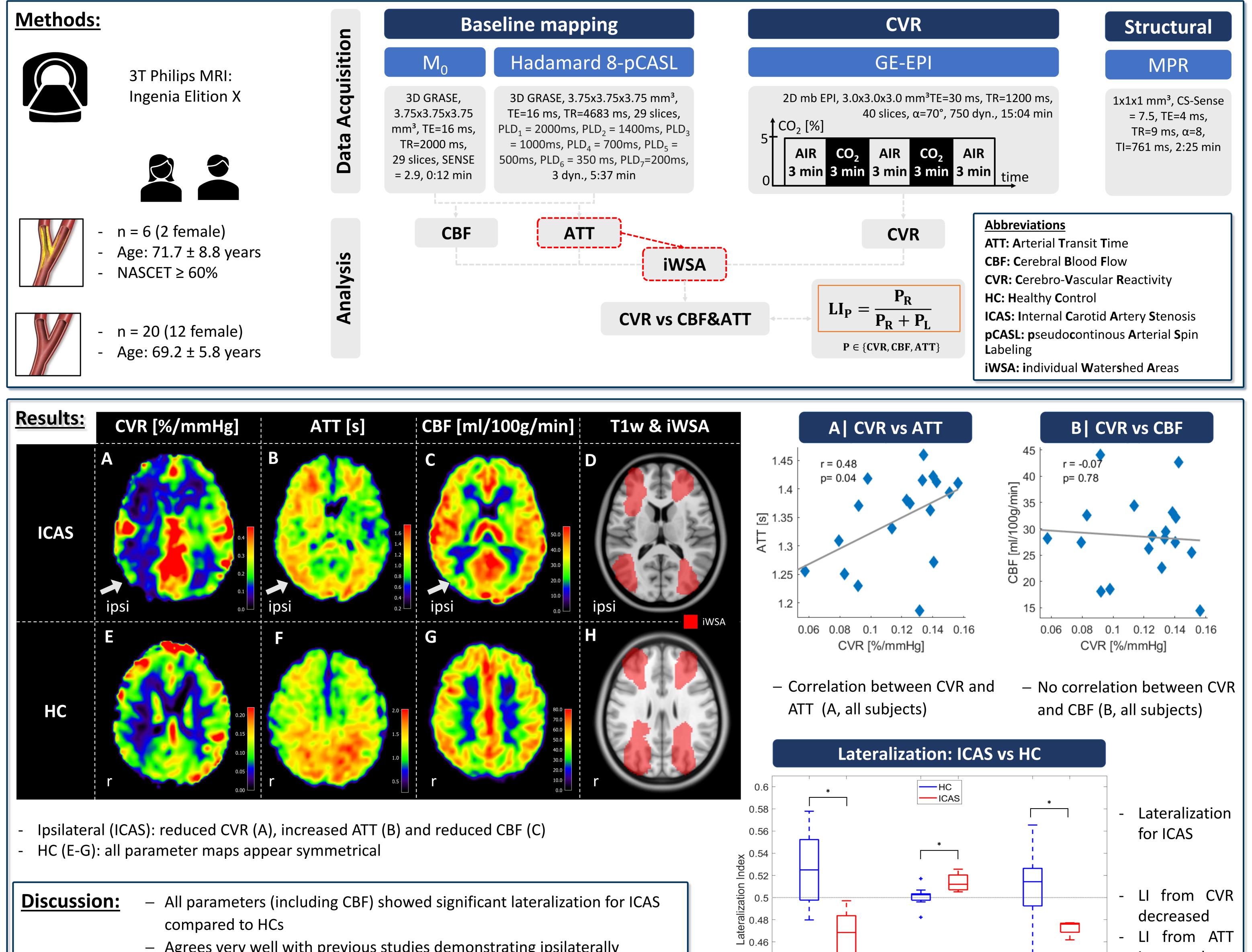


Investigating cerebral blood flow and arterial transit time as baseline measures for cerebrovascular reactivity in individual watershed areas


Gabriel Hoffmann^{1,2}, Lena Schmitzer^{1,2}, Franziska Richter¹, Matthias JP van Osch^{3,4}, Lena Václavů³, Jan Kufer¹, Jannis Bodden¹, Jens Göttler¹, Claus Zimmer^{1,2}, Stephan Kaczmarz^{1,2,5}, Christine Preibisch^{1,2,6}


¹Technical University of Munich, School of Medicine, Institute of Neuroradiology, TUM University Hospital, Munich, Germany; ³ C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands; ⁴ Leiden Institute of Brain and Cognition, Leiden University, Leiden, The Netherlands; ⁵Philips Research, Hamburg, Germany; ⁶ Technical University of Munich, School of Medicine and Health, Clinic of Neurology, TUM University Hospital, Munich, Germany; ⁶ Technical University of Munich, School of Medicine and Health, Clinic of Neurology, TUM University Hospital, Munich, Germany; ⁶ Technical University of Munich, School of Medicine and Health, Clinic of Neurology, TUM University Hospital, Munich, Germany; ⁶ Technical University of Munich, School of Medicine and Health, Clinic of Neurology, TUM University Hospital, Munich, Germany; ⁶ Technical University of Munich, School of Medicine and Health, Clinic of Neurology, TUM University Hospital, Munich, Germany; ⁶ Technical University of Munich, School of Medicine and Health, Clinic of Neurology, TUM University Hospital, Munich, Germany; ⁶ Technical University of Munich, School of Medicine and Health, Clinic of Neurology, TUM University Hospital, Munich, Germany; ⁶ Technical University Hospital, Munich, Germany; ⁶ Technical University, Leiden, The Netherlands; ⁹ Philips Research, Hamburg, Germany; ⁶ Technical University of Munich, School of Medicine and Health, Clinic of Neurology, TUM University, Leiden, The Netherlands; ⁹ Philips Research, Hamburg, Germany; ⁹ Technical University, Leiden, The Netherlands; ⁹ Philips Research, Hamburg, Germany; ⁹ Technical University, Leiden, The Netherlands; ⁹ Philips Research, Hamburg, Germany; ⁹ Technical University, Leiden, The Netherlands; ⁹ Philips Research, Hamburg, Germany; ⁹ Technical University, Leiden, The Netherlands; ⁹ Philips Research, Hamburg, Germany; ⁹ Technical University, Leiden, The Netherlands; ⁹ Philips Research, Hamburg, Germany; ⁹ Technical University, Leiden, The Netherlands; ⁹ Philips Research, Hamburg, Germany; ⁹ Philips Research, Hamburg, Hambu

Purpose:

Aim:

- CVR is a promising in internal carotid artery stenosis (ICAS) ^{1,2}
- Watershed Areas, at the junction of cerebral vascular territories, are of particular interest³⁻⁵
- CVR is usually measured using CO₂ \rightarrow sophisticated gas application setup limits applicability
- Evaluate if baseline measures (ATT and CBF) correlate with CVR in iWSA and indicate hemodynamic alterations within ICAS patients'

- - - Agrees very well with previous studies demonstrating ipsilaterally

impaired hemodynamics^{1,2,6}

Importantly, baseline measures concorded within iWSAs, which are

especially prone to hemodynamic impairments^{2,4}

gabriel.hoffmann@tum.de

Conclusions:

- Impaired hemodynamics in ICAS in baseline measures of ATT and CBF in agreement with hypercapnia-based CVR

- ATT may be an especially sensitive proxy for CVR in settings where hypercapnia application is not feasible

References:

1: Donahue et al., Consensus statement on current and emerging methods for the diagnosis and evaluation of cerebrovascular disease, JCBFM, 2018 2: Kaczmarz et al., Hemodynamic impairments within individual watershed areas in asymptomatic carotid artery stenosis by multimodal MRI, JCBFM, 2021 3: Momjian-Mayor et al., The pathophysiology of watershed infarction in internal carotid artery disease: review of cerebral perfusion studies, Stroke, 2005 4: Kaczmarz et al., Increased variability of watershed areas in patients with high-grade carotid stenosis, Neuroradiology, 2018 5: van Laar, Symptomatic carotid artery occlusion: flow territories of major brain-feeding arteries, Radiology, 2007 6: Göttler, The stronger one-sided relative hypoperfusion, the more pronounced ipsilateral spatial attentional bias in patients with asymptomatic carotid stenosis, JCBFM, 2020

Contact information:	Acknowledgements:
Gabriel Hoffmann	Ev. Studienwerk Villigst
Technical University of Munich	German Research
(TUM)	Fundation (DFG)