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Motion in quantitative MRI Acquisition time reduced by over 40%

* Motion-induced B, inhomogeneity changes PHIMO avoids repeated acquisitions by utilizing information from
particularly impact T2* quantification from GRE MRI* the T2* quantification to detect and exclude motion-corrupted
k-space lines from a data-consistent DL reconstruction:

— Significantly improves image quality in presence of motion

« Current HR/QR-MoCo? relies on repeated acquisitions
— substantially increased acquisition time

« Most learning-based brain MoCo?® developed for high-
resolution scans or without ensuring data consistency

Physics loss enables self-supervised PHIMO detects and excludes motion
and SU bjeCt'SpeCiﬁC mOtiOn COrreCtiOn PHIMO suppresses severe motion artefacts and preserves

Assumption of individual motion events allows to split MoCo into: image quality for minor motion case
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2. Reconstruction of undersampled data with unrolled network «* vV 2:
— Pre-trained on motion-free data (supervised) °
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Utilizing empirical correlation coefficient as physics loss

phys
o Improved image quality
i
PHIMO quantitatively approaches the performance of
Reconstructed Fitted T2* “Fitted”
magnitude s7¢¢ and s, magnitude s/ HR/QR-MoCo and Outperforms OR-BA:
. . . . .y MAE (1) SSIM (1) FSIM (1)
— Combine physics loss with regularization on the variation of . 3
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PE lines brackets indicate comparisons with no statistical significance
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