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Physics-Informed Deep Learning for Motion-

Corrected Reconstruction of Quantitative Brain MRI

PHIMO avoids repeated acquisitions by utilizing information from 

the T2* quantification to detect and exclude motion-corrupted 

k-space lines from a data-consistent DL reconstruction: 

→ Significantly improves image quality in presence of motion

Motion in quantitative MRI

• Motion-induced B0 inhomogeneity changes 

particularly impact T2* quantification from GRE MRI1

• Current HR/QR-MoCo2 relies on repeated acquisitions

→ substantially increased acquisition time

• Most learning-based brain MoCo3 developed for high-

resolution scans or without ensuring data consistency

PHIMO detects and excludes motion

PHIMO suppresses severe motion artefacts and preserves 

image quality for minor motion case

Improved image quality

PHIMO quantitatively approaches the performance of 

HR/QR-MoCo and outperforms OR-BA:

Physics loss enables self-supervised 

and subject-specific motion correction
Assumption of individual motion events allows to split MoCo into:

→ Combine physics loss with regularization on the variation of 

predicted masks for adjacent slices:
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2. Reconstruction of undersampled data with unrolled network

→  Pre-trained on motion-free data (supervised)
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Utilizing empirical correlation coefficient as physics loss

Data details
• Multi-coil raw k-space data from 15 volunteers 

(6/2/7 subjects for train/val/test set)

• Repeated scans with and without 

voluntary head motion
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Recon PHIMO 

PHIMO detects individual motion events:
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4 test subjects with severe and 3 test subjects with minor motion; 

brackets indicate comparisons with no statistical significance

1. Detection and exclusion of motion-corrupted k-space lines

→ Optimise for the best mask on motion-corrupted data
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Acquisition time reduced by over 40%


