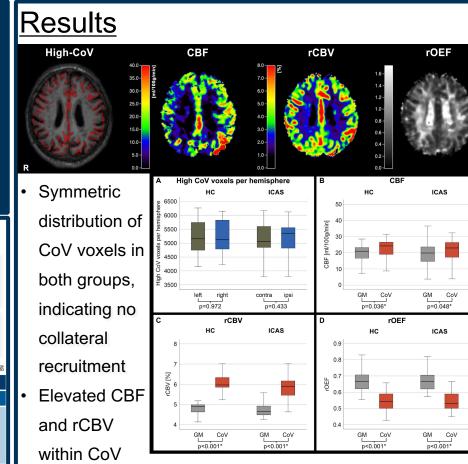

Hemodynamic characteristics of leptomeningeal collaterals in patients with asymptomatic high-grade internal carotid artery stenosis


Lena Schmitzer¹, Alexander Seiler², Claus Zimmer¹, Kilian Weiss³, Christine Preibisch^{1,4}, Fahmeed Hyder⁵, Jens Göttler^{1,5}, Stephan Kaczmarz^{1,3,5}

¹School of Medicine, Department of Neuroradiology, Technical University of Munich (TUM), Munich, Germany; ²Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany ³Philips GmbH Market DACH, Hamburg, Germany; ⁴School of Medicine, Department of Neurology, Technical University of Munich (TUM), Munich, Germany; ⁵MRRC, Yale University, New Haven, CT,

Background

- Internal carotid artery stenosis (ICAS) accounts for 10-20% of strokes¹
- Secondary collateral flow in chronic hypoperfusion however is not understood
- Coefficient of variance (CoV) of a dynamic susceptibility contrast (DSC) time series as a proxy of pial collaterals²

In contrast, rOEF was about 20% lower in CoV

compared to grey matter.

Discussion

- The hemodynamics within CoV voxels imply a high density of arteriols.³
- Pial collateral recruitment limited to severely deteriorated hemodynamics ^{4,5}
- Hemodynamic impairment might still be compensated, possibly also by primary collateral pathways via the Circle of Willis ⁶

Conclusion

Absence of secondary collateral flow in our group of asymptomatic patients

High potential to detect future pial collateral flow and to determine status of arterial vessels

References

- 1: Petty et al., Stroke, 1999
- 2: Seiler et al., *JCBFM*, 2020
- 3: Brozici et al., Stroke, 2003
- 4: Sebök et al., *JCBFM*. 2021
- 5: Kunieda et al.,*InternMed*, 2017
- 6:Schmitzer et al., JMRI, 2021

Contact information

Lena Schmitzer
Technical University of
Munich(TUM)
Diagnostic and Interventional

Neuroradiology
I.schmitzer@tum.de