Department of Neuroradiology Klinikum rechts der Isar Technical University of Munich

Comparing myelin-sensitive markers MWF, ihMTR, and MTsat in healthy and normal-appearing brain tissue and multiple sclerosis lesions

<u>Ronja C. Berg¹</u>, Viola Pongratz², Markus Lauerer², Thomas Amthor³, Guillaume Gilbert⁴, Aurore Menegaux¹, Claus Zimmer¹, Christian Sorg¹, Mariya Doneva³, Irene Vavasour⁵, Mark Mühlau², Christine Preibisch¹

Poster Session	Multiple Sclerosis		
Date	09 May 2022		
Time	10:15		
Computer #	10		
Program #	0890		
	¹ Tech		

Technical University of Munich, School of Medicine, Department of Neuroradiology, Munich, Germany ² Technical University of Munich, School of Medicine, Department of Neurology, Munich, Germany ³ Philips Research Europe, Hamburg, Germany ⁴ MR Clinical Science, Philips Healthcare, Mississauga, ON, Canada ⁵ University of British Columbia, Department of Radiology, Vancouver, BC, Canada

JOINT ANNUAL MEETING ISMRM-ESMRMB ISMRT 31ST ANNUAL MEETING

07-12 MAY 2022 | LONDON, ENGLAND, UK

A HYBRID EXPERIENCE

Declaration of Financial Interests or Relationships

Speaker Name: RONJA BERG

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Introduction

ТШП Methods

Methods					
The Participants	3 T, Philips		Lesions	Brain regions	
<u>Healthy</u> :	<u>MWF</u> :	<u>MWF</u> :	Segmentation:	<u>Whole-brain</u> :	
• n = 5, 3f / 2m	• SD gradient- and spin-echo (GRASE) sequence • TE1/ Δ TE = 8/8ms.	 Using the Sparsity Promoting Iterative 	Lesion growth algorithm lesion	GM and WM segmentation	
• 32 ± 3 years	 48 echoes, 20 slices res: 1x2x5 mm³ 	Joint Non-negative	segmentation tool	SPM12's segment	
MS patients:	<u>ihMTR</u> :	least squares (SPIJN) algorithm	for SPM12	module (tissue prob. > 0.5)	
• n = 5, 2f / 3m	 3D gradient-echo (GE) TE1/ΔTE = 3.5/5.7ms 	ihMTR:	 Based on FLAIR & MPRAGE 	Anatomical:	
• 33 ± 6 years	 res: 2.2x2.2x2. mm³ 10 MT pulses, α_{MT} = 90°, 	 Combination of 	Lesion VOI	Several tracts	
• 4 RRMS,	t _{MT} = 0.9 ms	single and dual	Lesion probability	from the ICBM-	
1 CIS	• $3 \times 3D$ GE: 1) $\alpha = 4^{\circ}$, 2) $\alpha =$	saturation MT	> 0.5	DTI-81 WM labels	
 Disease duration: 3-15 y, 	25°, both TR = 18ms; 3) MT-w: α = 6°, TR = 35ms	images	Peri-lesion:	Evaluation:	
(avg.: 9.4 y)	 All: 1x1x1 mm³, 6 echoes TE1/ΔTE = 2.4/2.4 ms 	MTsat:	• 3-voxel wide shell	 In subjects' native 	
 EDSS: 0-1.5, (avg.: 1.1) 	 MT pulse: α_{MT} = 540°, t_{MT} = 12.8 ms, f_{MT} = 2200 Hz 4) B1-map for bias field correction 	 Parameter map calculation via the hMRI toolbox 	surrounding lesions within NAWM	spaces (MPRAGE data space)	

Contact: ronja.berg@tum.de

Comparing myelin-sensitive markers in healthy tissue and MS lesions

TIII Visual Comparison

- Visual similarity
- Appearance of lesions
 - Lower values
 - Some differences visible
- White matter
 - Stronger variation in MWF
 - MTsat most homogeneous

Quantitative evaluations

- MWF varies most strongly across WM VOIs
- MTsat most homogeneous
- Within MS lesions:
 - Clearly reduced values
 - MTsat values
 comparable to GM
 - For MWF and ihMTR, differences to MW less prominent
- Peri-lesion:
 - Largest difference to NAWM in MTsat

Quantitative evaluations

Correlation between VOI-average myelin marker values in WM

- Highest between MWF and ihMTR
- Lowest between MWF and MTsat
 - \rightarrow Rely on different contrast mechanisms

1 **G-ratio imaging**

Stikov, Nikola, et al. "In vivo histology of the myelin g-ratio with magnetic resonance imaging." Neuroimage 118 (2015): 397-405. www.doi.org/10.1016/j.neuroimage.2015.05.023

Comparing myelin-sensitive markers in healthy tissue and MS lesions

Stikov et al., 2015

 $g = r_i/R_i = constant$

- MVF estimation from myelin-sensitive markers
- AVF calculation based on diffusion data

g-ratio evaluation

- g-ratio values within WM strongly depend on the myelin-sensitive marker
 - g-ratio values within lesion quite diverse

sometimes > WM, sometimes < WM

TITE Conclusion

Largest differences between various WM structures

Good correlation with MWF

MTsat

 Largest difference between peri-lesion and NAWM

• g-ratio values quite diverse within lesions

- Combined use of several myelin-sensitive markers
 - Disentangling microstructural effects
- Further studies needed

We highly appreciate support by the Friedrich-Ebert-Stiftung (FES) providing a PhD grant for Ronja Berg

Thank you for your attention!

Quantitative evaluations

Pooled standard deviation, averaged across participants:

- Highest for MWF
- Lowest for MTsat
- Often slightly lower for normalappearing than for healthy tissue