Department of Neuroradiology Klinikum rechts der Isar Technical University of Munich

Comparing the SPIJN algorithm for myelin water fraction mapping with conventional NNLS evaluation in healthy and multiple sclerosis brains

Ronja C. Berg¹, Thomas Amthor², Irene Vavasour³, Mariya Doneva², Christine Preibisch¹

Poster Session	Multiple Sclerosis 09 May 2022		
Date			
Time	09:15		
Computer #	14		
Program #	0789		

¹ Technical University of Munich, School of Medicine, Department of Neuroradiology, Munich, Germany ² Philips Research Europe, Hamburg, Germany ³ University of British Columbia, Department of Radiology, Vancouver, BC, Canada

JOINT ANNUAL MEETING ISMRM-ESMRMB ISMRT 31ST ANNUAL MEETING

07-12 MAY 2022 | LONDON, ENGLAND, UK

A HYBRID EXPERIENCE

Declaration of Financial Interests or Relationships

Speaker Name: RONJA BERG

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Introduction

Myelin Water Fraction (MWF) Mapping

Monitoring demyelinating diseases

Methods

Participants	Acquisition		Lesions	Brain regions
<u>Healthy</u> : • n = 5, 3f / 2m • 32 ± 3 years <u>MS patients</u> :	Hardware: • 3 T Philips • 32-channel head coil <u>Myelin water imaging</u> :	 NNLS: Non-negative least squares Stimulated echo correction 	 Segmentation: Lesion growth algorithm, lesion segmentation tool for SPM12 Based on ELAIP 	<u>Whole-brain</u> : • GM and WM segmentation SPM12's segment module (tissue prob. > 0.5)
 n = 5, 2f / 3m 33 ± 6 years 4 RRMS, 1 CIS Disease duration: 3-15 y, 	 3D gradient- and spin-echo (GRASE) sequence TE1 / ΔTE = 8 ms, TR = 1120 ms 48 echoes 	 SPIJN: Dictionary-based approach Using a combination of a non-negativity and a joint sparsity expertenent. 	 Based on FLAIR & MPRAGE Lesion VOI: Lesion probability > 0.5 Peri-lesion: 	Anatomical: • Several tracts from the ICBM- DTI-81 WM labels atlas Evaluation:
(avg.: 9.4 y) • EDSS: 0-1.5, (avg.: 1.1)	 1x2x5mm³ resolution 20 slices α=90° 	 Constraint Enables inclusion of complex data 	3-voxel wide shell surrounding lesions within NAWM	 In subjects' native spaces (GRASE data space)

TIII Visual Comparison

- <u>Overall</u>: Visual similarity of MWF maps
- Some differences within lesion
 - Mostly SPIJN-based MWFs are lower
 - Partly visual similarity within lesions

1111 Visual Comparison

- NNLS vs. both SPIJN-based MWFs
 - Higher in most lesions
 - Slightly lower across WM
- cSPIJN vs. both magnitude-based processing
 - Phase-like patterns
 - cSPIJN could be more precise incorporating additional data

Quantitative evaluations

- Slightly higher MWF in WM for SPIJN compared to NNLS
- Similar tendencies in WM
 - Highest MWF in the internal capsule
 - Lowest MWF in external capsule and cingulum
- Lesion-MWF
 - Comparable to WM-MWF for NNLS
 - Clearly lower than WM-MWF for both SPIJN-based methods

Quantitative evaluations – Bland-Altman evaluations

- Highest agreement between both SPIJN algorithms
- cSPIJN compares better with NNLS than mSPIJN
 - Possibly eliminating bias when including complex data

TIM Conclusion

- MWF in lesion comparable to WM
 - Possibly low degree of demyelination

- Generally, good agreement with NNLS-MWF in GM and WM
- Clearly lower MWF within lesion

• Slightly higher MWF in non-lesion tissue

 Somewhat better agreement with NNLS-MWF compared to mSPIJN

Outlook

 Comparisons of SPIJN-MWF with gold standard are needed Thank you for your attention!

Quantitative evaluations – Pooled standard deviation

- Similar behavior of pooled standard deviations within WM
 - Highest STD in whole-brain WM and external capsule
- STD slightly lower within WM VOIs for SPIJN-based MWFs compared to NNLSMWF